Wind speed forecasting based on autoregressive moving average- exponential generalized autoregressive conditional heteroscedasticity-generalized error distribution (ARMA-EGARCH-GED) model
نویسندگان
چکیده
With the increase of wind power as a renewable energy source in many countries, wind speed forecasting has become more and more important to the planning of wind speed plants, the scheduling of dispatchable generation and tariffs in the day-ahead electricity market, and the operation of power systems. However, the uncertainty of wind speed makes troubles in them. For this reason, a wind speed forecasting method based on time-series is proposed in this paper. We adopt exponential GARCH (EGARCH) models as asymmetric specifications and GARCH-GED for distribution assumptions. The wind speed series are forecasted by using the autoregressive moving average (ARMA)-GARCH model, ARMA-GARCH-M model and ARMA-GARCH-GED model, respectively, after which the forecasting precision of ARMA-GARCH, ARMA-GARCH-M and ARMA-EGARCH-GED models are compared. The results show that ARMA-EGARCH-GED model possesses higher accuracy than ARMA-GARCH-M model (Lalarukh and Yasmin, 1997), and is of certain practical value. However, this study confirms that the conditional generalized error distribution (GED) can better describe the possibility of fat-tailed, non-normal conditional distribution of returns.
منابع مشابه
Modeling and forecasting exchange rate volatility in Bangladesh using GARCH models: a comparison based on normal and Student’s t-error distribution
Methods: Using daily exchange rates for 7 years (January 1, 2008, to April 30, 2015), this study attempted to model dynamics following generalized autoregressive conditional heteroscedastic (GARCH), asymmetric power ARCH (APARCH), exponential generalized autoregressive conditional heteroscedstic (EGARCH), threshold generalized autoregressive conditional heteroscedstic (TGARCH), and integrated g...
متن کاملA Method of Short-term Wind Speed Forecasting Based on Generalized Autoregressive Conditional Heteroscedasticity Model
In order to improve the safety of train operation, a short-term wind speed forecasting method is proposed based on a linear recursive autoregressive integrated moving average (ARIMA) algorithm and a non-linear recursive generalized autoregressive conditionally heteroscedastic (GARCH) algorithm (ARIMA-GARCH). Firstly, the non-stationarity embedded in the original wind speed data is pre-processed...
متن کاملForecasting Wind Power – Modeling Periodic and Non-linear Effects Under Conditional Heteroscedasticity
In this article we present an approach that enables joint wind speed and wind power forecasts for a wind park. We combine a multivariate seasonal time varying threshold autoregressive moving average (TVARMA) model with a power threshold generalized autoregressive conditional heteroscedastic (power-TGARCH) model. The modeling framework incorporates diurnal and annual periodicity modeling by peri...
متن کاملExponential Conditional Volatility Models
The asymptotic distribution of maximum likelihood estimators is derived for a class of exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models. The result carries over to models for duration and realised volatility that use an exponential link function. A key feature of the model formulation is that the dynamics are driven by the score. Keywords: Duration models; g...
متن کاملVolatility Forecasting With Range-Based EGARCH Models
We provide a simple, yet highly effective framework for forecasting return volatility by combining exponential generalized autoregressive conditional heteroscedasticity models with data on the range. Using Standard and Poor’s 500 index data for 1983–2004, we demonstrate the importance of a long-memory specification, based on either a two-factor structure or fractional integration, that allows f...
متن کامل